Local to global geometric methods in information theory

نویسنده

  • Emmanuel Abbe
چکیده

This thesis treats several information theoretic problems with a unified geometric approach. The development of this approach was motivated by the challenges encountered while working on these problems, and in turn, the testing of the initial tools to these problems suggested numerous refinements and improvements on the geometric methods. In ergodic probabilistic settings, Sanov's theorem gives asymptotic estimates on the probabilities of very rare events. The theorem also characterizes the exponential decay of the probabilities, as the sample size grows, and the exponential rate is given by the minimization of a certain divergence expression. In his seminal paper, A Mathematical Theory of Communication, Shannon introduced two influential ideas to simplify the complex task of evaluating the performance of a coding scheme: the asymptotic perspective (in the number of channel uses) and the random coding argument. In this setting, Sanov's theorem can be used to analyze ergodic information theoretic problems, and the performance of a coding scheme can be estimated by expressions involving the divergence. One would then like to use a geometric intuition to solve these problems, but the divergence is not a distance and our naive geometric intuition may lead to incorrect conclusions. In information geometry, a specific differential geometric structure is introduced by means of "dual affine connections". The approach we take in this thesis is slightly different and is based on introducing additional asymptotic regimes to analyze the divergence expressions. The following two properties play an important role. The divergence may not be a distance, but locally (i.e., when its arguments are "close to each other"), the divergence behaves like a squared distance. Moreover, globally (i.e., when its arguments have no local restriction), it also preserves certain properties satisfied by squared distances. Therefore, we develop the Very Noisy and Hermite transformations, as techniques to map our global information theoretic problems in local ones. Through this localization, our global divergence expressions reduce in the limit to expressions defined in an inner product space. This provides us with a valuable geometric insight to the global problems, as well as a strong tool to find counter-examples. Finally, in certain cases, we have been able to "lift" results proven locally to results proven globally. We consider the following three problems. First, we address the problem of finding good linear decoders (maximizing additive metrics) for compound discrete memoryless channels. Known universal decoders are not linear and most of them heavily depend on the finite alphabet assumption. We show that by using a finite number of additive metrics, we can construct decoders that are universal (capacity achieving) on most compound sets. We then consider additive Gaussian noise channels. For a given perturbation of a Gaussian input distribution, we define an operator that measures how much variation is induced in the output entropy. We found that the singular functions of this operator are the Hermite polynomials, and the singular values are the powers of a signal to noise ratio. We show, in particular, how to use this structure on a Gaussian interference channel to characterize a regime where interference should not be treated as noise. Finally, we consider multi-input multi-output channels and discuss the properties of the optimal input distributions, for various random fading matrix ensembles. In particular, we prove Telatar's conjecture on the covariance structure minimizing the outage probability for output dimension one and input dimensions less than one hundred. Thesis Supervisor: Lizhong Zheng Title: Associate Professor Thesis Supervisor: Emre Telatar Title: Professor

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Zigzag Theory with Local Shear Correction Factors for Semi-Analytical Bending Modal Analysis of Functionally Graded Viscoelastic Circular Sandwich Plates

Free bending vibration analysis of the functionally graded viscoelastic circular sandwich plates is accomplished in the present paper, for the first time. Furthermore, local shear corrections factors are presented that may consider simultaneous effects of the gradual variations of the material properties and the viscoelastic behaviors of the materials, for the first time. Moreover, in contrast ...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

On the Path to UHC – Global Evidence Must Go Local to Be Useful; Comment on “Disease Control Priorities Third Edition Is Published: A Theory of Change Is Needed for Translating Evidence to Health Policy”

The Disease Control Priorities (DCP) publications have pioneered new ways of thinking about investing in health. We agree with Norheim, that a useful first step to advance efforts to translate DCP’s global evidence into local health priorities, is to develop a clear Theory of Change (ToC). However, a ToC that aims to define how global evidence (DCP and others) can be used to inform national pol...

متن کامل

Global optimization of fractional posynomial geometric programming problems under fuzziness

In this paper we consider a global optimization approach for solving fuzzy fractional posynomial geometric programming problems. The problem of concern involves positive trapezoidal fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm which achieves the optimal solution of the optimization problem by means of solving a sequence of subproblems ...

متن کامل

Large Amplitude Vibration of Imperfect Shear Deformable Nano-Plates Using Non-local Theory

In this study, based on nonlocal differential constitutive relations of Eringen, the first order shear deformation theory of plates (FSDT) is reformulated for vibration of nano-plates considering the initial geometric imperfection. The dynamic analog of the von Kármán nonlinear strain-displacement relations is used to derive equations of motion for the nano-plate. When dealing with nonlineariti...

متن کامل

A novel Local feature descriptor using the Mercator projection for 3D object recognition

Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008